Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 103: 105096, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574408

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS: We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS: We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION: The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING: Funding acknowledgements for each cohort can be found in the Supplementary Note.

2.
Nat Commun ; 12(1): 5618, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584077

RESUMEN

Monozygotic (MZ) twins and higher-order multiples arise when a zygote splits during pre-implantation stages of development. The mechanisms underpinning this event have remained a mystery. Because MZ twinning rarely runs in families, the leading hypothesis is that it occurs at random. Here, we show that MZ twinning is strongly associated with a stable DNA methylation signature in adult somatic tissues. This signature spans regions near telomeres and centromeres, Polycomb-repressed regions and heterochromatin, genes involved in cell-adhesion, WNT signaling, cell fate, and putative human metastable epialleles. Our study also demonstrates a never-anticipated corollary: because identical twins keep a lifelong molecular signature, we can retrospectively diagnose if a person was conceived as monozygotic twin.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Sitios de Carácter Cuantitativo/genética , Gemelización Monocigótica/genética , Gemelos Monocigóticos/genética , Adulto , Finlandia , Genotipo , Humanos , Persona de Mediana Edad , Países Bajos , Polimorfismo de Nucleótido Simple , Sistema de Registros/estadística & datos numéricos , Estudios Retrospectivos , Reino Unido , Adulto Joven
3.
Nat Commun ; 12(1): 2830, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990564

RESUMEN

Coffee and tea are extensively consumed beverages worldwide which have received considerable attention regarding health. Intake of these beverages is consistently linked to, among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle factors on disease onset. Here we report the results from epigenome-wide association studies (EWAS) on coffee and tea consumption in 15,789 participants of European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value <1.1×10-7), which annotated to the AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and PHGDH genes. Among them, cg14476101 is significantly associated with expression of the PHGDH and risk of fatty liver disease. Knockdown of PHGDH expression in liver cells shows a correlation with expression levels of genes associated with circulating lipids, suggesting a role of PHGDH in hepatic-lipid metabolism. EWAS meta-analysis on tea consumption reveals no significant association, only two CpGs annotated to CACNA1A and PRDM16 genes show suggestive association (P-value <5.0×10-6). These findings indicate that coffee-associated changes in DNA methylation levels may explain the mechanism of action of coffee consumption in conferring risk of diseases.


Asunto(s)
Café/efectos adversos , Metilación de ADN , Epigenoma , Té/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Islas de CpG , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Hígado/enzimología , Masculino , Persona de Mediana Edad , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/genética , Factores de Riesgo
4.
J Clin Endocrinol Metab ; 106(5): e2191-e2202, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33484127

RESUMEN

CONTEXT: Circulating concentrations of free triiodothyronine (fT3), free thyroxine (fT4), and thyrotropin (TSH) are partly heritable traits. Recent studies have advanced knowledge of their genetic architecture. Epigenetic modifications, such as DNA methylation (DNAm), may be important in pituitary-thyroid axis regulation and action, but data are limited. OBJECTIVE: To identify novel associations between fT3, fT4, and TSH and differentially methylated positions (DMPs) in the genome in subjects from 2 Australian cohorts. METHOD: We performed an epigenome-wide association study (EWAS) of thyroid function parameters and DNAm using participants from: Brisbane Systems Genetics Study (median age 14.2 years, n = 563) and the Raine Study (median age 17.0 years, n = 863). Plasma fT3, fT4, and TSH were measured by immunoassay. DNAm levels in blood were assessed using Illumina HumanMethylation450 BeadChip arrays. Analyses employed generalized linear mixed models to test association between DNAm and thyroid function parameters. Data from the 2 cohorts were meta-analyzed. RESULTS: We identified 2 DMPs with epigenome-wide significant (P < 2.4E-7) associations with TSH and 6 with fT3, including cg00049440 in KLF9 (P = 2.88E-10) and cg04173586 in DOT1L (P = 2.09E-16), both genes known to be induced by fT3. All DMPs had a positive association between DNAm and TSH and a negative association between DNAm and fT3. There were no DMPs significantly associated with fT4. We identified 23 differentially methylated regions associated with fT3, fT4, or TSH. CONCLUSIONS: This study has demonstrated associations between blood-based DNAm and both fT3 and TSH. This may provide insight into mechanisms underlying thyroid hormone action and/or pituitary-thyroid axis function.


Asunto(s)
Epigenoma/fisiología , N-Metiltransferasa de Histona-Lisina/genética , Factores de Transcripción de Tipo Kruppel/genética , Glándula Tiroides/fisiología , Triyodotironina/sangre , Adolescente , Australia/epidemiología , Niño , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Estudios Observacionales como Asunto/estadística & datos numéricos , Enfermedades de la Tiroides/sangre , Enfermedades de la Tiroides/epidemiología , Enfermedades de la Tiroides/genética , Pruebas de Función de la Tiroides , Estudios en Gemelos como Asunto/estadística & datos numéricos
5.
Sci Rep ; 9(1): 9758, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278309

RESUMEN

Both gut microbiota and diet have been shown to impact visceral fat mass (VFM), a major risk factor for cardiometabolic disease, but their relative contribution has not been well characterised. We aimed to estimate and separate the effect of gut microbiota composition from that of nutrient intake on VFM in 1760 older female twins. Through pairwise association analyses, we identified 93 operational taxonomic units (OTUs) and 10 nutrients independently linked to VFM (FDR < 5%). Conditional analyses revealed that the majority (87%) of the 93 VFM-associated OTUs remained significantly associated with VFM irrespective of nutrient intake correction. In contrast, we observed that the effect of fibre, magnesium, biotin and vitamin E on VFM was partially mediated by OTUs. Moreover, we estimated that OTUs were more accurate predictors of VFM than nutrients and accounted for a larger percentage of its variance. Our results suggest that while the role of certain nutrients on VFM appears to depend on gut microbiota composition, specific gut microbes may affect host adiposity regardless of dietary intake. The findings imply that the gut microbiota may have a greater contribution towards shaping host VFM than diet alone. Thus, microbial-based therapy should be prioritised for VFM reduction in overweight and obese subjects.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Grasa Intraabdominal/anatomía & histología , Anciano , Índice de Masa Corporal , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Nutrientes , Tamaño de los Órganos
6.
Am J Clin Nutr ; 110(2): 437-450, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31165884

RESUMEN

BACKGROUND: Folate and vitamin B-12 are essential micronutrients involved in the donation of methyl groups in cellular metabolism. However, associations between intake of these nutrients and genome-wide DNA methylation levels have not been studied comprehensively in humans. OBJECTIVE: The aim of this study was to assess whether folate and/or vitamin B-12 intake are asssociated with genome-wide changes in DNA methylation in leukocytes. METHODS: A large-scale epigenome-wide association study of folate and vitamin B-12 intake was performed on DNA from 5841 participants from 10 cohorts using Illumina 450k arrays. Folate and vitamin B-12 intakes were calculated from food-frequency questionnaires (FFQs). Continuous and categorical (low compared with high intake) linear regression mixed models were applied per cohort, controlling for confounders. A meta-analysis was performed to identify significant differentially methylated positions (DMPs) and regions (DMRs), and a pathway analysis was performed on the DMR annotated genes. RESULTS: The categorical model resulted in 6 DMPs, which are all negatively associated with folate intake, annotated to FAM64A, WRAP73, FRMD8, CUX1, and LCN8 genes, which have a role in cellular processes including centrosome localization, cell proliferation, and tumorigenesis. Regional analysis showed 74 folate-associated DMRs, of which 73 were negatively associated with folate intake. The most significant folate-associated DMR was a 400-base pair (bp) spanning region annotated to the LGALS3BP gene. In the categorical model, vitamin B-12 intake was associated with 29 DMRs annotated to 48 genes, of which the most significant was a 1100-bp spanning region annotated to the calcium-binding tyrosine phosphorylation-regulated gene (CABYR). Vitamin B-12 intake was not associated with DMPs. CONCLUSIONS: We identified novel epigenetic loci that are associated with folate and vitamin B-12 intake. Interestingly, we found a negative association between folate and DNA methylation. Replication of these methylation loci is necessary in future studies.


Asunto(s)
Dieta , Epigenómica , Ácido Fólico/administración & dosificación , Estudio de Asociación del Genoma Completo , Vitamina B 12/administración & dosificación , Adulto , Anciano , Metilación de ADN , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad
7.
Clin Epigenetics ; 10(1): 126, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30342560

RESUMEN

BACKGROUND: Tobacco smoking is a risk factor for multiple diseases, including cardiovascular disease and diabetes. Many smoking-associated signals have been detected in the blood methylome, but the extent to which these changes are widespread to metabolically relevant tissues, and impact gene expression or metabolic health, remains unclear. METHODS: We investigated smoking-associated DNA methylation and gene expression variation in adipose tissue biopsies from 542 healthy female twins. Replication, tissue specificity, and longitudinal stability of the smoking-associated effects were explored in additional adipose, blood, skin, and lung samples. We characterized the impact of adipose tissue smoking methylation and expression signals on metabolic disease risk phenotypes, including visceral fat. RESULTS: We identified 42 smoking-methylation and 42 smoking-expression signals, where five genes (AHRR, CYP1A1, CYP1B1, CYTL1, F2RL3) were both hypo-methylated and upregulated in current smokers. CYP1A1 gene expression achieved 95% prediction performance of current smoking status. We validated and replicated a proportion of the signals in additional primary tissue samples, identifying tissue-shared effects. Smoking leaves systemic imprints on DNA methylation after smoking cessation, with stronger but shorter-lived effects on gene expression. Metabolic disease risk traits such as visceral fat and android-to-gynoid ratio showed association with methylation at smoking markers with functional impacts on expression, such as CYP1A1, and at tissue-shared smoking signals, such as NOTCH1. At smoking-signals, BHLHE40 and AHRR DNA methylation and gene expression levels in current smokers were predictive of future gain in visceral fat upon smoking cessation. CONCLUSIONS: Our results provide the first comprehensive characterization of coordinated DNA methylation and gene expression markers of smoking in adipose tissue. The findings relate to human metabolic health and give insights into understanding the widespread health consequence of smoking outside of the lung.


Asunto(s)
Tejido Adiposo/química , Metilación de ADN , Perfilación de la Expresión Génica/métodos , Fumar/genética , Gemelos/genética , Regulación hacia Arriba , Adulto , Anciano , Proteínas Sanguíneas/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Citocinas/genética , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Receptor Notch1/genética , Receptores de Trombina
8.
Sci Rep ; 8(1): 14862, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291282

RESUMEN

Genome-wide DNA methylation has been implicated in complex human diseases. Here, we identified epigenetic biomarkers for type 2 diabetes (T2D) underlying obesogenic environments. In a blood-based DNA methylation analysis of 11 monozygotic twins (MZTW) discordant for T2D, we discovered genetically independent candidate methylation sites. In a follow-up replication study (17 MZTW pairs) for external validation, we replicated the T2D-association at a novel CpG signal in the ELOVL fatty acid elongase 5 (ELOVL5) gene specific to T2D-discordant MZTW. For concordant DNA methylation signatures in tissues, we further confirmed that a CpG site (cg18681426) was associated with adipogenic differentiation between human preadipocytes and adipocytes isolated from the same biopsy sample. In addition, the ELOVL5 gene was significantly differentially expressed in adipose tissues from unrelated T2D patients and in human pancreatic islets. Our results demonstrate that blood-derived DNA methylation is associated with T2D risk as a proxy for cumulative epigenetic status in human adipose and pancreatic tissues. Moreover, ELOVL5 expression was increased in cellular and mouse models of induced obesity-related diabetes. These findings may provide new insights into epigenetic architecture by uncovering methylation-based biomarkers.


Asunto(s)
Acetiltransferasas/genética , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Tejido Adiposo/metabolismo , Adulto , Animales , Islas de CpG , Modelos Animales de Enfermedad , Epigénesis Genética , Elongasas de Ácidos Grasos , Genómica , Humanos , Inflamación/genética , Resistencia a la Insulina , Islotes Pancreáticos/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/genética , Regulación hacia Arriba
9.
PLoS One ; 12(4): e0176284, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448553

RESUMEN

The liver and the kidney are the most common targets of chemical toxicity, due to their major metabolic and excretory functions. However, since the liver is directly involved in biotransformation, compounds in many currently and normally used drugs could affect it adversely. Most chemical compounds are already labeled according to FDA-approved labels using DILI-concern scale. Drug Induced Liver Injury (DILI) scale refers to an adverse drug reaction. Many compounds do not exhibit hepatotoxicity at early stages of development, so it is important to detect anomalies at gene expression level that could predict adverse reactions in later stages. In this study, a large collection of microarray data is used to investigate gene expression changes associated with hepatotoxicity. Using TG-GATEs a large-scale toxicogenomics database, we present a computational strategy to classify compounds by toxicity levels in human and animal models through patterns of gene expression. We combined machine learning algorithms with time series analysis to identify genes capable of classifying compounds by FDA-approved labeling as DILI-concern toxic. The goal is to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. The study illustrates that expression profiling can be used to classify compounds according to different hepatotoxic levels; to label those that are currently labeled as undertemined; and to determine if at the molecular level, animal models are a good proxy to predict hepatotoxicity in humans.


Asunto(s)
Citotoxinas/toxicidad , Bases de Datos Genéticas , Genómica/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Toxicogenética , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Factores de Tiempo , Aprendizaje Automático no Supervisado
10.
Genome Med ; 9(1): 28, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340599

RESUMEN

BACKGROUND: The association of in vitro fertilisation (IVF) and DNA methylation has been studied predominantly at regulatory regions of imprinted genes and at just thousands of the ~28 million CpG sites in the human genome. METHODS: We investigated the links between IVF and DNA methylation patterns in whole cord blood cells (n = 98) and cord blood mononuclear cells (n = 82) from newborn twins using genome-wide methylated DNA immunoprecipitation coupled with deep sequencing. RESULTS: At a false discovery rate (FDR) of 5%, we identified one significant whole blood DNA methylation change linked to conception via IVF, which was located ~3 kb upstream of TNP1, a gene previously linked to male infertility. The 46 most strongly associated signals (FDR of 25%) included a second region in a gene also previously linked to infertility, C9orf3, suggesting that our findings may in part capture the effect of parental subfertility. Using twin modelling, we observed that individual-specific environmental factors appear to be the main overall contributors of methylation variability at the FDR 25% IVF-associated differentially methylated regions, although evidence for methylation heritability was also obtained at several of these regions. We replicated previous findings of differential methylation associated with IVF at the H19/IGF2 region in cord blood mononuclear cells, and we validated the signal at C9orf3 in monozygotic twins. We also explored the impact of intracytoplasmic sperm injection on the FDR 25% signals for potential effects specific to male or female infertility factors. CONCLUSIONS: To our knowledge, this is the most comprehensive study of DNA methylation profiles at birth and IVF conception to date, and our results show evidence for epigenetic modifications that may in part reflect parental subfertility.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Fertilización In Vitro , Genoma Humano , Infertilidad/genética , Gemelos , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Células Sanguíneas/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Sangre Fetal/metabolismo , Humanos , Recién Nacido , Infertilidad/metabolismo , Masculino
11.
PLoS Negl Trop Dis ; 10(3): e0004570, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27031998

RESUMEN

An important NK-cell inhibition with reduced TNF-α, IFN-γ and TLR2 expression had previously been identified in patients with diffuse cutaneous leishmaniasis (DCL) infected with Leishmania mexicana. In an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL, this study aimed at identifying differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized and diffuse cutaneous leishmaniasis through gene expression profiling. Our results indicate that important genes involved in the innate immune response to Leishmania are down-regulated in NK cells from DCL patients, particularly TLR and JAK/STAT signaling pathways. This down-regulation showed to be independent of LPG stimulation. The study sheds new light for understanding the mechanisms that undermine the correct effector functions of NK cells in patients with diffuse cutaneous leishmaniasis contributing to a better understanding of the pathobiology of leishmaniasis.


Asunto(s)
Quinasas Janus/metabolismo , Células Asesinas Naturales/fisiología , Leishmania mexicana , Leishmaniasis Cutánea Difusa/metabolismo , Factores de Transcripción STAT/metabolismo , Receptores Toll-Like/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica/fisiología , Humanos , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Transducción de Señal/fisiología , Transcriptoma
12.
Epigenomics ; 8(1): 105-17, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26678685

RESUMEN

Epigenetics describes the study of cellular modifications that can modify the expression of genes without changing the DNA sequence. DNA methylation is one of the most stable and prevalent epigenetic mechanisms. Twin studies have been a valuable model for unraveling the genetic and epigenetic epidemiology of complex traits, and now offer a potential to dissect the factors that impact DNA methylation variability and its biomedical significance. The twin design specifically allows for the study of genetic, environmental and lifestyle factors, and their potential interactions, on epigenetic profiles. Furthermore, genetically identical twins offer a unique opportunity to assess nongenetic impacts on epigenetic profiles. Here, we summarize recent findings from twin studies of DNA methylation profiles across tissues, to define current knowledge regarding the genetic and nongenetic factors that influence epigenetic variation.


Asunto(s)
Metilación de ADN , Interacción Gen-Ambiente , Gemelos/genética , Epigénesis Genética , Variación Genética , Humanos , Modelos Genéticos , Estudios en Gemelos como Asunto
13.
Genome Med ; 6(7): 60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484923

RESUMEN

Monozygotic (MZ) twins share nearly all of their genetic variants and many similar environments before and after birth. However, they can also show phenotypic discordance for a wide range of traits. Differences at the epigenetic level may account for such discordances. It is well established that epigenetic states can contribute to phenotypic variation, including disease. Epigenetic states are dynamic and potentially reversible marks involved in gene regulation, which can be influenced by genetics, environment, and stochastic events. Here, we review advances in epigenetic studies of discordant MZ twins, focusing on disease. The study of epigenetics and disease using discordant MZ twins offers the opportunity to control for many potential confounders encountered in general population studies, such as differences in genetic background, early-life environmental exposure, age, gender, and cohort effects. Recently, analysis of disease-discordant MZ twins has been successfully used to study epigenetic mechanisms in aging, cancer, autoimmune disease, psychiatric, neurological, and multiple other traits. Epigenetic aberrations have been found in a range of phenotypes, and challenges have been identified, including sampling time, tissue specificity, validation, and replication. The results have relevance for personalized medicine approaches, including the identification of prognostic, diagnostic, and therapeutic targets. The findings also help to identify epigenetic markers of environmental risk and molecular mechanisms involved in disease and disease progression, which have implications both for understanding disease and for future medical research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...